
 
 

 
 
 
 

Journal of Mechanical Science and Technology 22 (2008) 2357~2364 
      www.springerlink.com/content/1738-494x

DOI: 10.1007/s12206-008-0930-7 

Journal of 
Mechanical 
Science and 
Technology 

Performance limit of a passive vertical isolator using  
a negative stiffness mechanism† 

Hyeong-Joon Ahn* 
Department of Mechanical Engineering, Soongsil University, 511 Sangdo-dong, Dongjak-gu, Seoul, Korea, 156-743 

 
(Manuscript Received July 26, 2007; Revised June 24, 2008; Accepted September 26, 2008) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
A passive vibration isolator using a negative stiffness mechanism (NSM) is being considered for small precision in-

struments since it does not need any outer power supply and pressurized air, and its fundamental frequency can be 
lowered down to 0.5 Hz. Although the working principle of the NSM and its patents are well known, neither the isola-
tion performance limit related to the lowest fundamental frequency nor its nonlinear behavior have been studied. This 
paper discusses the performance limit of the passive vertical isolator using the NSM and presents the design guidelines 
for the isolator based on that performance limit. First, a nonlinear dynamic model of the passive isolator is derived 
through solid approximations, and the fundamental frequency or performance limit is obtained using nonlinear analysis, 
which entirely explains the nonlinear behavior of the isolator. In addition, the approximate design equations of the 
isolator are derived to analyze its performance limit. Finally, an approximate expression of the lowest fundamental 
frequency of the isolator is derived using nonlinear analysis and design equations, which provide substantial design 
guidelines to improve isolator performance. 
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1. Introduction 

Vibration criteria for vibration-sensitive equipment 
have become stricter due to greater precision and a 
continuing need to minimize production defects in 
microelectronic, medical, and biopharmaceutical in-
dustries. In addition, these trends in vibration criteria 
will continue into the future, considering the rapid 
development of nanotechnology. Therefore, local 
vibration isolation systems are necessary for precision 
and vibration sensitive objects, although anti-vibration 
techniques are already widely applied for building 
structures. 

Passive isolators prevent vibration transmission by 
reducing its stiffness, and pneumatic passive isolators 

are most widely used. Recently, several isolators based 
on a zero-compliance mechanism have been proposed 
and are replacing the pneumatic passive isolators [1-5]. 
In particular, a passive vibration isolator using a nega-
tive stiffness mechanism (NSM), as shown in Fig. 1, is 
being considered for small precision instruments. 

Since the passive isolator using the NSM does not 
need any external power supply or pressurized air, 
 

  
 
                      (a) Photo      (b) Schematic 
 
Fig. 1. The vertical isolator using NSM [3, 4]. 
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maintenance efforts can be significantly reduced. 
Moreover, the isolation efficiency of the isolator is 
much better than that of an ordinary pneumatic isola-
tor since the fundamental frequency of the isolator can 
be lowered to 0.5 Hz. However, the systematic design 
procedure of the NSM is not fully revealed even 
though the working principle of the NSM and its pat-
ents are well known [3-4]. In addition, the isolator 
shows a nonlinear behavior as the fundamental fre-
quency is lowered. Nevertheless, the nonlinear behav-
ior of the isolator cannot be explained with a linear 
model. Furthermore, there is no literature on the low-
est fundamental frequency that determines the isola-
tion performance. 

In this paper, the performance limit or the lowest 
fundamental frequency of the passive vertical isolator 
using the NSM is discussed, and the design guidelines 
of the isolator are presented. First, the approximate 
governing equation of the passive isolator is shown to 
be the well-known Duffing equation, and the lowest 
fundamental frequency is obtained through the nonlin-
ear analysis of the dynamic model. The derived 
nonlinear model can completely explain the nonlinear 
behavior and tells us how to determine the lowest 
fundamental frequency of the isolator. Approximate 
design equations for the isolator are derived to analyze 
the performance limit of the isolator. Finally, the per-
formance limit or the lowest fundamental frequency of 
the isolator is derived using the results of the nonlinear 
analysis and the design equations.  
 

2. Nonlinear model and analysis of the passive 
isolator using NSM 

2.1 Nonlinear dynamic model 

The vertical isolator of Fig. 1 can be simplified into 
mass, vertical spring, and NSM consisting of the 
notched flexures of length [L] and a compressive force 
[P]. The schematic of the vertical isolator is shown in 
Fig. 2. 
 

  
Fig. 2. Schematic of the vertical isolator. 

The equation of motion of the isolator can be ex-
pressed as 

( ) 0sy pmy k k y+ + =  (1) 

where ksy is the stiffness of the vertical spring and kp(P, 
L) is the stiffness of the NSM.  

The stiffness of the NSM [kp(P, L)] can be approxi-
mated as the sum of the stiffness of the notched flex-
ure under zero compressive force [kp0] and the nega-
tive stiffness due to the compressive force [-P/L] as 
shown in Eq. (2). A small motion [∆y] of the mass 
produces additional moment load [P∆y] due to the 
compressive force, and the moment load makes the 
flexure deflect further, which means the negative stiff-
ness. The exact stiffness of a beam under a compres-
sive force has a complex form of trigonometric func-
tions, and the equivalent length of the notched flexure 
depends on its deformation [6-7]. Since the exact stiff-
ness of the notched flexure cannot give us any physi-
cal insight, the approximate expression is used to de-
rive a nonlinear model. The compressive force is gen-
erated by initially deforming a horizontal spring of the 
stiffness [ksp] up to some displacement [x0] such as P = 
ksp (x0+ xp). 

0( , )p p
Pk P L k
L

≈ −  (2) 

The parasitic X-directional motion [xp] is generated 
by the Y-directional deformation of the notched flex-
ure, and the parasitic motion is approximately ex-
pressed as Eq. (3). 

2 2

2 2

2
p

y yx
LL L y

= − ≈ −
+ −

 (3) 

Considering both the compressive force generation 
of a horizontal spring and the parasitic motion, the 
modified schematic of the vertical isolator is shown in 
Fig. 3. The resulting dynamic model of the vertical 
isolator is shown in Eq. (4).  

2
0

0 2( ) 0sy p sp sp
x ymy k k k k y
L L

+ + − + =  (4) 
 

m

ksy

ks2

x0

P=ksp(x0+xp)

xp(y,L)

kp(P,L)

y

 
Fig. 3. Schematic of the vertical isolator considering the 
parasitic motion. 
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Simplifying Eq. (4) by introducing the equivalent 
stiffness [keq (= ksy + kp0 - kspx0/L)], the resulting equa-
tion of motion can be expressed by Eq. (5), which is 
the well-known Duffing equation with a nonlinear 
cubic stiffness. 

3

2 0eq sp
ymy k y k
L

+ + =  (5) 

 
2.2 Nonlinear analysis 

2.2.1 Equilibrium points 
The equilibrium points of Eq. (5) can be obtained by 

making the differential term zero and solving the re-
maining algebraic equation. The resulting equilibrium 
points of the equation of motion depend on the value 
of the equivalent stiffness [keq] as shown in Eq. (6) 

0 , 0

0, , 0

eq

eqeq
eq

sy

k

ky
L k

k

≥⎧
⎪

−= ⎨ ± <⎪
⎩

 (6) 

The normalized equilibrium points [yeq/L] according 
to the normalized equivalent stiffness [keq/ksy] are 
shown in Fig. 4. If the equivalent stiffness is larger 
than zero, the governing equation has only one equi-
librium point at y = 0. On the other hand, if the equiva-
lent stiffness becomes negative, the governing equa-
tion has three equilibrium points.  

Stabilities of the equilibrium points can be deter-
mined by inspecting the eigenvalues of the linearized 
system at the equilibrium points. If the real part of the 
eigenvalue is positive, the corresponding equilibrium 
point is unstable. The eigenvalues and the correspond- 
 

 
Fig. 4. Variations of the equilibrium points according to the 
equilibrium stiffness. 

ing equilibrium points are shown in Eq. (7). If the 
equivalent stiffness is larger than zero [keq ≥ 0], the 
linearized system has stable conjugate eigenvalues, 
and the equilibrium point at y = 0 is stable. Therefore, 
the system response will finally converge at the equi-
librium point. On the other hand, the system has one 
unstable equilibrium point at y = 0 and two stable 

equilibrium points at eq

sy

ky L k
−= ±  as the 

equivalent stiffness becomes negative. That is, the 
equilibrium point at y = 0 becomes unstable, and two 
new stable equilibrium points appear as the equivalent 
stiffness becomes negative. Therefore, the system 
response will finally converge, not at the equilibrium 

point of y = 0, but at one of eq

sy

ky L k
−= ± . 
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 (7) 

 
Fig. 5 shows two vibration responses of a commer-

cial minus-k vertical isolator [3-4]: positive equivalent 
stiffness [Fig. 5(a)] and negative equivalent stiffness 
[Fig. 5(b)]. The responses shown in Fig. 5 are different 
from those of an ordinary linear vibration in several 
points. First, the vibration period of Fig. 5(a) becomes 
longer as time elapses, and the response decreases. 
This can be explained by the cubic stiffness of Eq. (5). 
Second, the equilibrium point of Fig. 5(b) is far from y 
= 0, and the response is not symmetric to the equilib-
rium point, while the response of Fig. 5(a) converges 
to zero and is symmetric to the X-axis as described in 
Eq. (7). The nonlinear behaviors of the vertical isolator 
can be fully described by this newly-derived nonlinear 
model.  

Since the equilibrium point should not be changed, 
the best isolation performance or the lowest funda-
mental frequency of the isolator can be achieved at the 
transition point where the sign of the equivalent stiff-
ness changes from positive to negative. In the next 
section, the fundamental frequency of the nonlinear 
model will be determined though nonlinear vibration 
analysis. 
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(a) Positive equivalent stiffness 

 
(b) Negative equivalent stiffness 

 
Fig. 5. Vibration responses according to the equilibrium point 
change. 

 
2.2.2 Lowest fundamental frequency 
The free vibration response and fundamental fre-

quency of the nonlinear equation of motion are de-
rived using a perturbation method. For convenience, 
some variables of Eq. (4) are replaced with new vari-
ables, and the resulting equation is shown in Eq. (8). 

2 2 3
0 0 0y y yω εω+ + =  (8) 

where 2
0/eqk m ω= , 2/sp spk m ω=  and 2 2 2

0 / ,sp Lεω ω=  
and ε is the small perturbation.  

The vibration response and the fundamental fre-
quency of Eq. (8) can be expressed by the power series 
of the small perturbation [ε] as shown in Eq. (9).  

2
0 1 2

2
0 1 2y y y y

ω ω εω ε ω
ε ε

= + + +

= + + +
 (9) 

Lindstedt’s method is then employed to suppress the 
secure terms for every order. The fundamental fre-

quency for the second order approximation can be 
derived as Eq. (10) [8].  

2 2 43 21(1 )
8 256eq A Aω ω ε ε= + −  (10) 

where A [= y(0)] is the initial displacement at t = 0. 
After squaring both sides of Eq. (10) and substitut-

ing the original parameters for the small perturbation 
[ε], the lowest fundamental frequency can be ap-
proximated as Eq. (11) in that the initial deformation 
[A] is far less than the notched flexure length [L]. The 
lowest fundamental frequency is related to the stiff-
ness of the horizontal spring for the compressive force 
[ksp], initial deformation [A], and length [L] of the 
notched flexure. 

2
2 2

2
3
4

sp A
L
ω

ω ≈  (11) 

Notice that the lowest fundamental frequency of the 
isolator is governed not by the vertical coil spring [ksy] 
but by the horizontal spring for a compressive force 
[ksp]. That is, since the stiffness of the vertical coil 
spring is balanced by the negative stiffness of the flex-
ure, the nonlinear cubic stiffness term of Eq. (5) de-
termines the lowest fundamental frequency. The low-
est fundamental frequency of the isolator indicates the 
isolation performance: lower fundamental frequency 
gives better isolation efficiency. At first glance, the 
fundamental frequency can be lowered by reducing 
the horizontal spring stiffness and initial deformation, 
and increasing the notched flexure length. However, 
there must be a relationship between the initial defor-
mation [A] and the notched flexure length [L] if the 
initial deformation is assumed to be a function of the 
maximum deformation. Therefore, the fundamental 
frequency should be determined by considering the 
relationship between the maximum deformation and 
the notched flexure length.  
 

3. Approximate design equations for a passive 
isolator using the NSM 

3.1 Design considerations 

3.1.1 Maximum deformation  
The total load of the notched flexure by both the de-

formation and the compressive force should be within 
the fatigue failure strength. The symmetric vertical 
force [F] is introduced for only the translation motion 
of the notched flexure as shown in Fig. 6. Since the  
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Fig. 6. The notched flexure. 

 
deformation of the thick part b is far less than that of 
the notched part a, the total vertical deformation can 
be expressed by  

 
2 a a by y Lθ= ∆ + ∆  (12) 

 
The stiffness of the notched flexure (Fig. 6) [kp0] 

without any compressive force can be expressed by Eq. 
(13) considering a simple beam theory under moment 
and force loads.  

 

0
3 2 22 1

3 2

p

a a b a b

F EIk
y L L L L L

= =
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 (13) 

 
The maximum force due to the maximum deforma-

tion of the notched flexure is determined by the prod-
uct of the stiffness [kp0] and the maximum deformation 
[ymax]. The location of the maximum moment is the 
end of the notched flexure, and the value can be ap-
proximately expressed by Eq. (14). The exact expres-
sion of the moment of the notched flexure under a 
compressive force is a very complex form of trigono-
metric functions, and the exact value can be obtained 
only by numerical calculation [6, 7]. Moreover, the 
location and the value of the maximum moment de-
pend on the compressive force and deformation of the 
flexure.  

 

max 0 ( )
2
b

p max a
LM k y L= +  (14) 

 
Since a large compressive force is required to bal-

ance the equivalent stiffness, the compressive force as 
well as the moment of Eq. (14) should be considered 
in the stress analysis. The total stress fluctuates ac-
cording to the isolator oscillation due to the moment 
and compressive force. The stress due to the compres-
sive force is the static component, while the stress due  

 
(a) The desired mode 

 

 
(b) The undesired mode 

 
Fig. 7. The buckling modes. 
 
to the moment is the alternating component [9]. If the 
height and width of the notched part of the flexure are 
h and w, respectively, the fatigue diagram of the So-
derberg line can be expressed by Eq. (15).  
 

3 2 2

( )
2 1

2 1 2
3 2

b
max a

e y
a a b a b

LEy LS h S P
whL L L L L

σ σ

σ σ

+
+ ≤

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 (15) 

 
where σe and σy are the endurance limit and the yield 
stress of the flexure material, respectively, and Sσ is 
the safety factor considering stress concentration. 
 

3.1.2 Buckling due to compressive force 
The buckling mode of the notched flexure in Fig. 

7(a) is desirable and the compressive force accelerates 
this buckling mode to produce the negative stiffness. 
Since part b is thick enough to be regarded as rigid, 
only the buckling condition of the notched part is con-
sidered. In case of Fig. 7(a), the boundary condition of 
the notched part is one end free and the other end fixed 
[Eq. (16a)]. On the other hand, the undesired buckling 
mode in Fig. 7(b) has a boundary condition of both 
ends fixed [Eq. (16b)]. Therefore, the compressive 
force satisfies both inequalities of Eq. (16c), consider-
ing both the buckling modes and safety factor [Sb] in 
Fig. 7 [9]. 

 
2
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EI P
L
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2

2
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2 24 a b a

EI EIP
L S L
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3.1.3 Required compressive force 
As mentioned in section 2.2.1, the lowest funda-

mental frequency can be achieved by an appropriate 
compressive force, which is large enough to compen-
sate for the stiffness of both the vertical coil spring and 
flexure stiffness. The total stiffness of Eq. (1) can be 
expressed by (ksy + n kp) if the number of flexure is n. 
Since the flexure stiffness [kp0] without any compres-
sive force in Eq. (2) is much smaller than the vertical 
coil spring stiffness [ksy], the flexure stiffness [kp0] 
without any compressive force is neglected for sim-
plicity. Then, the compressive force should be large 
enough to make the total stiffness less than zero as Eq. 
(17) to lower the fundamental frequency.  

 

( , ) 0
2total sy p sy

a b

nPk k n k P L k
L L

= + ⋅ ≈ − ≤
+

 (17) 

 
3.2 Derivation of the design equations 

If part b of the notched flexure is t times longer than 
part a of the notched flexure [Lb = tLa], design equa-
tions are derived for the design parameters to satisfy 
the three inequalities in section 3.1. First, Eq. (16b) 
can be expressed by Eq. (18a) considering the area 
moment of inertia [I ] is wh3/12, and Eq. (17) can be 
rewritten as Eq. (18b) considering Lb = tLa.   

 
2 2 3

2 212 bb a a

EI E whP
SS L L

π π≤ =  (18a) 

( 2)b a a
sy sy

L L t LP k k
n n
+ +≥ =  (18b)  

 
The two inequalities related to the compressive 

force [P], Eqs. (18a) and (18b), are combined as Eq. 
(19).   

 
2 3

2
( 2)

12
a

sy
b a

t L E whk P
n S L

π+ ≤ ≤  (19) 

 
Since the upper bound of the compressive force 

should be bigger than the lower bound, an inequality 
related to the length of the notched part [La] can be 
derived, and the inequality finally results in the upper 
bound of the length of the notched part [La] as shown 
in Eq. (20). 

 
2 3 2 3

3
2

( 2)
12 12 ( 2)

a
sy a

b b sya

t L E wh E nwhk L
n S S k tL

π π+ ≤ → ≤
+

 (20) 

For simplicity, the yield strength is assumed to be 
twice the endurance limit [σy =2σe] and the thick part b 
much longer than the notched part a [Lb >> La]. The first 
term of Eq. (15) can then be rewritten as (21a), neglect-
ing the cubic terms of La in the denominator. In addition, 
the second term of Eq. (15) can be rewritten as Eq. 
(21b) by substituting the maximum compression force 
of Eq. (19).  

3 2 2 2 2

( ) ( )22 2
2 1 12 2
3 2 2

b b
max a max a

e y
a a b a b a b a b

L LEy L Ey LS Sh h

L L L L L L L L L

σ σ

σ σ

+ +
≈

⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟
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2
max

y a

yES h
tLσ σ

=  (21a)  

2 3 2

2 2
1

12 12y y b ya b a

S SP E wh E hS h
wh wh S L S L

σ σ
σ

π π
σ σ σ

= =  (21b) 

Therefore, the lower limit of the notched part length 
[La] can be obtained as Eq. (22) since the sum of Eq. 
(21a) and (21b) should be less than one considering 
the fatigue condition of Eq. (15).  

2
2

12
max

a
y b

yE hS h L
t Sσ

π
σ

⎛ ⎞
+ ≤⎜ ⎟⎜ ⎟

⎝ ⎠
 (22) 

By combining the two inequalities related to the 
notched part length [La], Eqs. (20) and (22), a com-
plete inequality related to the notched part length can 
be derived as Eq. (23).  

2 2
3

12 12 ( 2)
max

a
y b b sy

yE h E nwS h L h
t S S k tσ

π π
σ

⎛ ⎞
+ ≤ ≤⎜ ⎟⎜ ⎟ +⎝ ⎠

 (23) 

Since the lower bound of Eq. (23) should be less 
than its upper bound for there to be a proper value of 
the notched part length, the minimum thickness [h] of 
the notched part a can be derived using Eq. (23) as 
well. Assuming that maximum deformation [ymax] is 
much larger than the thickness [h] for a small isolator, 
we can further simplify the minimum thickness of the 
notched part as Eq. (24).  

Therefore, if the vertical spring stiffness, safety fac-
tors, and the number and width of the notched flexure 
are given, the shape of the notched flexure can be de- 

2 2
3

2 2 2
3

4 3 2 2

12 12 ( 2)

144 ( 2)
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y b b sy

b symax

y

yE h E nwS h h
t S S k t

S EkS y t h
t n w

σ

σ

π π
σ

σ π

⎛ ⎞
+ ≤⎜ ⎟⎜ ⎟ +⎝ ⎠

+→ ≤

 (24) 
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Table 1. Design equations of the vertical isolator. 
 

Values Design equation 

h 
2 2 2

3
4 3 2 2

144 ( 2)b symax

y

S EkS y t
t n w

σ
σ π

+  

La 3
2 3

12 ( 2)b symax

y

S kS y t
t nw

σ
σ π

+  

P 
4

3
4 4

12 ( 2)b symax

y

S kS y t
n w

σ
σ π

+  

 
termined from the design equations, which are sum-
marized in Table 1.  
 

4. Lowest fundamental frequency of the verti-
cal isolator 

Assuming that the initial deformation [A] is equal to 
the maximum deflection [ymax] and substituting the 
design equation related to the notched flexure length in 
Table 1 for Eq. (11), the lowest fundamental fre-
quency can be rewritten as  

 

( )

2 2 4 2 2 6
2 2 2

32 2 2 2 8
3 3
4 4 144 2

sp y
sp

b sy

n w tA
L S S k tσ

ω σ πω ω≈ =
+

 (25) 

 
The approximate expression of the lowest funda-

mental frequency or Eq. (25) reveals meaningful de-
sign guidelines to improve the isolator performance. 
The most important parameter is the horizontal spring, 
the stiffness of which should be kept as small as possi-
ble, while it is better for the vertical spring to be very 
stiff. The number and width of the notched flexure 
should be minimized to enlarge the length of the 
notched flexure, which can lower the fundamental 
frequency of the isolator.  
 

5. Conclusion  

This paper discussed the performance limit of the 
passive vertical isolator using the NSM and presents 
the design guidelines of the isolator based on the per-
formance limit. First, the approximate dynamic model 
of the passive isolator was shown to be the well 
known Duffing equation, and the nonlinear analysis of  

the dynamic model resulted in a performance limit or 
the lowest fundamental frequency of the isolator. The 
nonlinear behavior of the isolator and the performance 
limitation were fully explained by the derived nonlin-
ear model. An approximate expression of the perform-
ance limit or the lowest fundamental frequency of the 
isolator was derived using the results of the nonlinear 
analysis and the design equations. The result showed 
meaningful design guidelines to improve the isolator 
performance. 
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